# Granitul radioactive dating

Science in Christian Perspective. Wiens has a PhD in Granitul radioactive dating, with a minor in Geology. His PhD thesis was on isotope ratios in meteorites, including surface exposure dating.

Radiometric dating--the process of determining the "Granitul radioactive dating" of rocks from the decay of their radioactive elements--has been in widespread use for over half a century. There are over forty such techniques, each using a different radioactive element or a different way of measuring them. It has become increasingly clear that these radiometric dating techniques agree with each other and as a whole, present a coherent picture in which the Earth was created a very long time ago.

Further evidence comes from the complete agreement between radiometric dates and other dating methods such as counting tree rings or glacier ice core layers. Many Christians have been led to distrust radiometric dating and are completely unaware of the great number of laboratory measurements that have shown these methods to be consistent.

Many are also unaware that Bible-believing Christians are among those actively involved in radiometric dating. This paper describes in relatively simple terms how a number of the dating techniques *Granitul radioactive dating,* how accurately the half-lives of the radioactive elements and the rock dates themselves are known, and how dates are checked with one another. In the process the paper refutes a number of misconceptions prevalent among Christians today.

This paper is available on the web via the American Scientific Affiliation and related sites to promote greater understanding and wisdom on this issue, particularly within the Christian community. Doubters Still Try Apparent Age? Rightly Handling the Word of Truth Appendix: Arguments over the age of the Earth have sometimes been *Granitul radioactive dating* for people who regard the Bible as God's word. Even though the Earth's age is never mentioned in the Bible, it is an issue because those who take a strictly literal view of the early chapters of Genesis can calculate an approximate date for the creation by adding up the life-spans of the people mentioned in the genealogies.

Assuming a strictly literal interpretation of the week of creation, even if some of the generations Granitul radioactive dating left out of the genealogies, the Earth would be less than ten thousand Granitul radioactive dating old.

Radiometric dating techniques indicate that the Earth is thousands of times older than that--approximately four and a half billion years old. Many Christians accept this and interpret the Genesis account in less scientifically literal ways. However, some Christians suggest that the geologic dating techniques are unreliable, that they are wrongly interpreted, or that they are confusing at best.

Unfortunately, much of the literature Granitul radioactive dating to Christians has *Granitul radioactive dating* either inaccurate or difficult to understand, so that confusion over dating techniques continues. The next few pages cover a broad overview of radiometric dating techniques, show a few examples, and discuss the degree to which the various dating systems agree with each other.

The goal is to promote greater understanding on this Granitul radioactive dating, particularly for the Christian community. Many people *Granitul radioactive dating* been led to be skeptical of dating without knowing much about it.

For example, most people don't realize that carbon dating is only rarely used on rocks. God has called us to be "wise as serpents" Matt. In spite of this, differences still occur within the church. A disagreement over the age of the Earth is relatively minor in the *Granitul radioactive dating* scope of Christianity; it is more important to agree on the Rock of Ages than on the age of rocks.

But because God has also called us to wisdom, this issue is worthy of study. Rocks are made up of many individual crystals, and each crystal is usually made up of at least several different chemical elements such as iron, magnesium, silicon, etc. Most of the elements in nature are stable and do not change. However, some elements are not completely stable in their natural state.

Some of the atoms eventually change from one element to another by a process called radioactive decay. If there are a lot of atoms of the original element, called the parent element, the atoms decay to another element, called the daughter element, at a predictable Granitul radioactive dating. The passage of time can be charted by the reduction in the number of parent atoms, and the increase in the number of daughter atoms.

Radiometric dating can be compared to an hourglass. When the glass is turned over, sand runs from the top to Granitul radioactive dating bottom. Radioactive atoms are like Granitul radioactive dating grains Granitul radioactive dating

sand--radioactive decays are like the falling of grains from the top to the bottom of the glass. You cannot predict exactly when any one particular grain will get to the bottom, but you can predict from one time to the next how long the whole pile of sand takes to fall.

Once all of the sand has fallen out of the top, the hourglass will no longer keep time unless it is turned over "Granitul radioactive dating." Similarly, when all the atoms of the Granitul radioactive dating element are gone, the rock will no longer keep time unless it receives a new batch of radioactive atoms. The rate of loss of sand from from the top of an hourglass compared to exponential type of decay of radioactive elements.

In exponential decay the amount of material decreases by half during each half-life. After two half-lives one-fourth remains, after three half-lives, one-eighth, etc. Unlike the hourglass, where the amount of sand falling is constant right up Granitul radioactive dating the end, the number of decays from a fixed number of radioactive atoms decreases as there are fewer atoms left to decay see Figure 1.

If it takes a certain length of time for half of the atoms to decay, it will take the same amount "Granitul radioactive dating" time for half of the remaining atoms, or a fourth of the original total, to decay.

In the next interval, with only a fourth remaining, only one eighth of the original total will decay. By the time ten of these intervals, or half-lives, has passed, less than one thousandth of the original number of radioactive atoms is left.

The equation for the fraction of parent atoms left is very simple. The type of equation is exponential, and is related to equations describing other well-known Granitul radioactive dating

such as population growth. Granitul radioactive dating

deviations have yet been found from this equation for radioactive decay. Also unlike the hourglass, there is no way to change the rate at which radioactive atoms decay in rocks.

If you shake the hourglass, twirl it, or put it in a rapidly accelerating vehicle, the time it takes the sand to fall will change.

But the radioactive atoms used *Granitul radioactive dating* dating techniques have been subjected to heat, cold, pressure, vacuum, acceleration, and strong chemical reactions to the extent that would be experienced by rocks or magma in the mantle, crust, or surface of the Earth or other planets without any significant change in their decay rate.

In only a couple of special cases have any "Granitul radioactive dating" rates been observed to vary, and none of these special cases Granitul radioactive dating

to the dating of rocks as discussed here.

These exceptions are discussed later. An hourglass will tell time correctly only if it is completely sealed. If it has a hole allowing the sand grains to escape out the *Granitul radioactive dating* instead of going through the neck, it will give the wrong time interval.

Similarly, *Granitul radioactive dating* rock that is to be dated must be sealed against loss or addition of either the radioactive daughter or parent.

If it has lost some of the daughter element, it will give "Granitul radioactive dating" inaccurately young age. As will be discussed later, most dating techniques have very good ways of telling if such a loss has occurred, in which case the date is thrown Granitul radioactive dating and so is the rock!

An hourglass measures how much time has passed since it was turned over. Actually it tells when a specific amount of time, e. Radiometric dating of rocks also tells how much time has passed since *Granitul radioactive dating* event occurred. For igneous rocks the event is usually its cooling and hardening from magma or lava.

For some other materials, the event is the end of a metamorphic heating event in which the rock gets baked underground at generally over a thousand degrees Fahrenheitthe uncovering of a surface by the scraping action of a glacier, the chipping of a meteorite off of an asteroid, or the length of time a plant or animal has been dead.

There are now well over forty different radiometric dating techniques, each based on a different Granitul radioactive dating isotope. The term isotope subdivides elements into groups of atoms that have the same atomic weight. For example carbon has isotopes of weight 12, 13, and 14 times the mass of a nucleon, referred to as carbon, carbon, or carbon abbreviated as 12 C, 13 C, 14 C.

It is only the Granitul radioactive dating

isotope that is radioactive. This will be discussed further in a later section.

A partial list of the parent and *Granitul radioactive dating* isotopes and the decay half-lives is given in Table I.

Notice the large range in the half-lives. Isotopes with long half-lives decay very slowly, and so are useful for dating. Some Naturally Occurring Radioactive Isotopes and their half-lives. Years Samarium Neodymium billion Rubidium Strontium Isotopes with shorter half-lives cannot date very ancient events because all of the atoms of the parent isotope would have already decayed away, like an hourglass left sitting with all the sand at the bottom.

Isotopes with relatively short half-lives are useful for dating correspondingly shorter intervals, and can Granitul radioactive dating

do so with greater accuracy, just as you would use a stopwatch rather than a grandfather clock to time a meter dash.

On the other hand, you would use a calendar, not a clock, to record time intervals of several weeks Granitul radioactive dating

more. The half-lives have all been measured directly either by using a radiation detector to count the number of atoms decaying in a given amount of time from a known amount of the parent material, or by measuring the ratio of daughter to parent Granitul radioactive dating in a sample that originally consisted completely of parent atoms.

Work on radiometric dating first started shortly after the turn of the 20th century, but progress was relatively slow before the late. However, by now we have had over fifty years to measure and re-measure the half-lives for many of the dating techniques. Very precise counting of the decay events or the daughter atoms can be done, so while the number of, say, rhenium atoms decaying in 50 years is a very small fraction of the total, the resulting osmium atoms can be very precisely counted.

For example, recall that only one gram of material contains over 10 21 1 with 21 zeros behind atoms. Even if only one trillionth of the atoms decay in one year, this is still millions of decays, each of which can be counted by a radiation detector!

The uncertainties on the half-lives given in the table are all very small. There is no evidence of any of the half-lives changing over time. In fact, as discussed below, they have been observed to not change at all over hundreds of thousands of years. Examples of Dating Methods for Igneous Rocks.

Now let's look at how the actual dating methods work. Igneous rocks are good candidates for dating. Recall that for igneous rocks the event being dated is when the rock was formed from magma or lava.

When the molten material cools and hardens, the atoms are *Granitul radioactive dating* longer free to move about. Daughter atoms that result from radioactive decays occurring after the rock cools are frozen in the place where they were made within the rock.

These atoms are like the sand grains accumulating in the bottom of the hourglass. Determining the age Granitul radioactive dating a rock is a two-step process. First one needs *Granitul radioactive dating* measure the number of daughter atoms and the number of remaining parent atoms and calculate the ratio between them.

Then the half-life is used to calculate the time it took to produce that ratio of parent atoms to daughter atoms. However, there is one complication. Radiometric dating or radioactive dating is a technique used to date materials such *Granitul radioactive dating* rocks or carbon, in which trace radioactive Granitul radioactive dating

were selectively.

Granit Technologies SA (GRT), based in Orbe and medium level radioactive. Date. Description. Notes.

10 PCT/EP07/ needed vast amounts of time and geology need a dating method for Granitul radioactive dating formations. (11) the nature of meta- morphism; (12) the origin of saline deposits ; (13) the nature of graniti- zation; and (14) Indeed, even radioactive dating is.

MORE: What isotopes are used in radioactive hookup

MORE: Ourlastnightband radioactive dating